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With the rapid development of artificial intelligence and machine learning, brain-inspired neuromorphic pho-
tonics has emerged as an extremely attractive computing paradigm, promising orders-of-magnitude higher com-
puting speed and energy efficiency compared to its electronic counterparts. Tremendous efforts have been devoted
to photonic hardware implementations of mimicking the nonlinear neuron-like spiking response and the linear
synapse-like weighting functionality. Here, we systematically characterize the spiking dynamics of a passive sil-
icon microring neuron. The research of self-pulsation and excitability reveals that the silicon microring can func-
tion as an all-optical class II resonate-and-fire neuron. The typical refractory period has been successfully
suppressed by configuring the pump power above the perturbation power, hence allowing the microring neuron
to operate with a speed up to roughly sub-gigahertz. Additionally, temporal integration and controllable inhib-
ition regimes are experimentally demonstrated for the first time, to the best of our knowledge. Our experimental
verification is obtained with a commercial CMOS platform, hence offering great potential for large-scale
neuromorphic photonics integration. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.445954

1. INTRODUCTION

Over the past few years, the rapid development of artificial in-
telligence has revolutionized many aspects of our lives, with
applications ranging from image recognition [1] to cancer di-
agnosis [2]. Meanwhile, machine learning itself has also posed
great challenges to the traditional von Neumann computing
architecture due to the massively distributed information
processing fashion [3]. Taking inspiration from the extraordi-
nary computational capacities of human brains [4], neuromor-
phic computing has emerged as a promising candidate for the
next generation intelligent computing paradigm. Currently
available electronic neuromorphic systems, e.g., TrueNorth [5],
Loihi [6], Neurogrid [7], and SpiNNaker [8], have demon-
strated significant performance enhancement in both power
efficiency and computing speed, but still face intrinsic bottle-
necks in terms of reduced bandwidth, limited speed, and large
multicasting [9]. Benefitting from the unique advantages of op-
tical devices, e.g., high parallelism, broad bandwidth, low cross
talk, and large integration, photonic neuromorphic systems are
capable of, in theory, outperforming state-of-the-art neuromor-
phic electronics with several orders-of-magnitude faster opera-
tion speed as well as far less power consumption [10]. Since the
pioneering work in the early 1990s [11,12], considerable efforts
have been aimed at hardware implementations of photonic
neurons, either realizing the nonlinear activation functions or
emulating the all-or-none dynamic response [3,9,13]. Notably,

spiking neurons can process information in a more biologically
computational fashion by exploring the sparse coding strategy
and event-driven nature of neural systems, thus rendering an
energy-efficient computing system that combines both the
noise robustness of digital computation and the bandwidth ef-
ficiency of analog communication [14]. The past decade has
witnessed a bloom of diverse photonic spiking neurons. Due
to the similar underlying excitability mechanisms with biologi-
cal neurons [15], semiconductor lasers of different types have
been the most widely employed approaches, including micror-
ings [16], microdisks [17,18], micropillars [19,20], quantum
dots [21–23], two sections with saturable absorber regions
[24,25], distributed feedback lasers [26], and vertical-cavity
surface-emitting lasers (VCSELs) [27–33]. There are also other
novel photonic demonstrations of spiking neural models, e.g.,
semiconductor optical amplifiers (SOAs) [34], microring mod-
ulators [35], and microring resonators with phase change
materials [36,37].

Although impressive performance has been numerically
and experimentally demonstrated with the aforementioned
schemes, the necessary use of active components leads to poor
compatibility with the mutual complementary metal–oxide–
semiconductor (CMOS) fabrication process, making it difficult
for large-scale integrated photonic neuromorphic systems. In
our previous work [38], we have theoretically analyzed the non-
linearity of passive microresonators in the silicon-on-insulator
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(SOI) platform, which can be utilized to realize the spiking dy-
namics of photonic neurons. Here, we further provide system-
atic experimental studies of a microring spiking neuron. The
discontinuous relation between oscillation frequency and opti-
cal pump power of self-pulsation offers direct evidence that
the silicon microring belongs to the class II resonate-and-fire
spiking neuron, which is further confirmed by subthreshold
oscillations and the existence of a thin threshold region of
excitability. Moreover, the all-optical microring spiking neuron
does not exhibit a typical refractory period by engineering the
perturbation power much higher than the pump power. As a
result, its operation speed is limited only by the excited pulse
width and can reach up to approximately sub-gigahertz (GHz),
much faster than prior work [39]. More importantly, we report
the first experimental demonstration of temporal integration
and inhibitory dynamics in passive microresonators, to the best
of our knowledge. These novel spiking regimes may potentially
pave the way toward large-scale photonic neural networks.

2. DESIGN OF ALL-OPTICAL SILICON SPIKING
NEURON AND EXPERIMENTAL SETUP

Biological neurons are capable of exhibiting a rich diversity of
spiking activities, the simplest of which can be categorized into
two classes. Table 1 provides a detailed summary of the most
important neurocomputational properties [4]. In general, inte-
grators feature a well-defined firing threshold and all-or-none
spiking dynamics. When the perturbation strength is below the
threshold, no spikes can be observed, whereas spike events with
relatively constant amplitude will be generated beyond a certain
value. Furthermore, the firing rate of integrators can be flexibly
tailored by adjusting the input strength, indicating a rate
coding scheme. On the other side, resonators feature fast sub-
threshold amplitude oscillations and typically exhibit a thresh-
old area. Within a certain power range, external stimuli can
excite resonators to produce spike events with varying ampli-
tudes, depending on the perturbation strength. Distinct from
the cases of integrators, the firing rate of resonators is limited to
a specific frequency band, which is determined by the sub-
threshold oscillations. Moreover, resonators are able to present
frequency preferences by responding to perturbations that are
weak but resonant with the nature subthreshold oscillation fre-
quency. It should be noted that integrators are ideal candidates
for neuromorphic information processing. Resonators, how-
ever, have also attracted much research interest and may find
important applications in selective communication among dif-
ferent neuron groups [40]. In fact, there has been evidence of
both integrators and resonators in human brains.

There has been long-held research interest in the nonline-
arity of microresonators to manipulate light with light. Due to
the free carrier dispersion (FCD) effect, the free carriers gen-
erated by two-photon absorption (TPA) induce a blueshift
to the resonance wavelength. Meanwhile, the absorbed optical
energy by free carrier absorption (FCA) is mainly lost by heat,
which leads to a redshift in the resonance wavelength owing to
the thermo-optic (TO) effect. However, the relaxation process
of heat is at least one order of magnitude slower than free car-
riers. As a result, the interplay between thermal and free carriers
contributes to diverse nonlinearities in microresonators. To
characterize this nonlinear process, we have proposed a univer-
sal coupled mode theory (CMT) model for all passive micro-
resonators [38], which can output “negative” pulses when
applying strong enough perturbations. Since information in
spike processing is contained in the presence timing of spikes,
regardless of their shapes, microresonators are still able to suc-
cessfully emulate the spiking dynamics of photonic neurons,
e.g., excitability, temporal integration, and inhibition.
Moreover, the phase-plane analysis has revealed that the excita-
bility of passive microresonators results from subcritical
Andronov–Hopf bifurcation [39], indicating class II neural
excitability. Although nonlinearities in a silicon microring have
been extensively investigated in experiments [39,41,42], there
has been little systematic research work concentrating on its
characteristics from the perspective of a spiking neuron.

To fully explore the potential of a passive microring neuron,
we have designed an all-pass silicon microring with a radius of
7 μm and a cross section of 500 nm × 220 nm, thus ensuring
single mode operation. The coupling gap between the bus wave-
guide and ring waveguide is 210 nm. The microring has
been fabricated with a standard CMOS process in CUMEC
(www.cumec.cn) within a multi-project wafer. The microscope
image of the microring used in the experiment is shown in
Fig. 1(a). The device characterization setup is given in the black
box in Fig. 1(b). The measured non-normalized transmission
spectra are schematically shown in Fig. 1(c), indicating a free
spectrum range (FSR) of∼13 nm. As illustrated in Fig. 1(d), the
microring has a resonance at 1548.471 nm with an extinction
ratio of ∼32 dB. The 3 dB bandwidth is about ∼25 pm,
corresponding to a quality factor (Q) of 62,000, which is high
enough for the silicon ring to exhibit various spiking
regimes [38].

The experimental setup to further study the temporal dy-
namics of the silicon microring neuron is also presented in
Fig. 1(b). The coupling loss between single mode fibers and
grating couplers is optimized to be ∼7.5 dB∕ facet at 1550 nm.
The pump light generated from a tunable continuous-wave

Table 1. Summary of Major Neurocomputational Properties [4]

Properties Integrators Resonators

Bifurcation Saddle-node on invariant circle Saddle-node Subcritical Andronov–Hopf Supercritical Andronov–Hopf
Excitability Class I Class II Class II
Bistability No Yes Yes No
Threshold Well defined May not be defined
Subthreshold oscillations No Yes
All-or-none spiking Yes No
Frequency preference No Yes
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(CW) laser source (Santec, TLS-770) is directly coupled into
the bus waveguide of the designed microring after being
polarized by a polarization controller (PC). To provide excita-
tory and inhibitory stimuli, the perturbation light is obtained
by modulating another tunable laser source (Keysight, 81960A)
with a high speed Mach–Zehnder modulator (Fujitsu,
FTM7939EK). The modulation signals are programmed with
a high speed arbitrary waveform generator (AWG) (Tektronix,
AWG7122C). To compensate for optical link loss, two erbium-
doped fiber amplifiers (EDFAs) are used to boost the input per-
turbation light and output light, which are separated with an
optical circulator of high isolation ratio. Before being detected
by a high speed photodetector (Finisar, XPDV2120R), the out-
put of EDFA is connected to a tunable bandpass filter (DiCon,
TF-1550-0.8-9/9LT-FC-1) centered at the wavelength of
pump light to filter out perturbation pulses and noise. The de-
tected optical signals together with a reference electric signal are
then sent into an oscilloscope (Tektronix, DSO2014) to mon-
itor real-time waveforms.

3. RESONATE-AND-FIRE MICRORING SPIKING
NEURON

A. Self-Pulsation
Considering that silicon microrings are able to exhibit self-
pulsation at both negative and positive detunings from their

resonance wavelengths, in our experiments, we detune the
wavelength of pump light at δλ � 20 pm from the resonance
at λr � 1548.471 nm, and no perturbation light is applied.
The measured output waveforms at different input powers
of 1, 3, 5 dBm are shown in Fig. 2(a), where the period of self-
pulsation gradually decreases with the increase of input power.
As illustrated in Fig. 2(b), self-pulsation can be observed only
when the optical pump power is above a certain value of
0.8 dBm. Otherwise, the output power will remain constant.
It should be noted that this kind of discontinuity in the
frequency–power relation reveals class II neural excitability.
We also notice that the oscillation frequency can be modified
only within a small range from 22 to 88 kHz, about two orders
of magnitude lower than previous results [39,41]. Since a com-
plete oscillation cycle requires the relaxation of both free car-
riers and temperature, the period of self-pulsation can be
roughly determined by τfc � τth. Similar to results reported
very recently [42], the sub-MHz oscillation in our case may
be attributed to a relatively long thermal relaxation time.

B. Excitability
To investigate the excitability behavior of a microring spiking
neuron, the optical pump power is fixed at Pin � 1 dBm near
the self-pulsation onset, and then we record the output signals
in response to perturbation pulses of increasing power.

PDBPFEDFA1CR

OSCAWG

TLSEOMEDFA2 PC

TLS PC DUT

OSA

Device characterization

(a)

(b)

(c) (d)

Fig. 1. (a) Microscope image of the silicon microring used in the experiment. (b) Schematic figure of the measurement setup for both char-
acterization of the microring and investigation of its spiking dynamics. TLS, tunable laser source; PC, polarization controller; DUT, device under
test; OSA, optical spectrum analyzer; CR, circulator; EDFA, erbium-doped fiber amplifier; BPF, bandpass filter; PD, photodetector; AWG, arbitrary
waveform generator; OSC, oscilloscope; EOM, electro-optical modulator. (c) Non-normalized transmission of the microring. (d) Transmission of
one single resonance and its Lorentz curve.
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The pump light is detuned at δλ � −20 pm from the resonant
wavelength at λr � 1548.471 nm, while the perturbation light
is detuned δλ � 10 pm near another resonance wavelength at
λr � 1535.560 nm. The on-chip input power of the pump
light and the perturbation light is estimated to be ∼7.5 dB
and ∼9 dB lower due to the grating couplers, respectively.
In the following experiments, the settings of pump light and
perturbation signals stay the same unless stated specifically.
Rectangular perturbation pulses with a time duration of
15 ns are generated by the AWG, and the data sequence repeats
at a frequency of 5 MHz. As can be seen in Fig. 3(a), stable and
obvious “negative” pulses can be observed when the optical
power of perturbation light is above 6.9 dBm. It is worth men-
tioning that the time traces of output signals have been shifted
to align with the reference electric signal. With the increase of
perturbation power, the dip becomes deeper. To quantitatively
analyze this process, we normalize the strength of “negative”
spikes in relation to the deepest situation. As shown in
Fig. 3(b), the normalized strength first increases almost linearly
when Ptr is below 7.7 dBm. Then it goes through a sharp jump
as Ptr increases from 7.7 dBm to 7.9 dBm. After that, the nor-
malized strength experiences a slow increase once again and al-
most stabilizes as a constant when Ptr is above 8.3 dBm. The
trend agrees quite well with our theoretical prediction [38]. We
emphasize that the narrow threshold region for perturbation

power from 7.7 dBm to 7.9 dBm, in combination with the
subthreshold spikes of varying strengths, further confirms that
the silicon microring functions as a class II resonate-and-fire
neuron.

The frequency detuning of the pump and perturbation light
has little impact on the shape and power of microring neuron
spikes. We first numerically study this with the CMT model
[38], where the wavelengths of the pump and perturbation sig-
nals are set to be the same and detuned from the resonance
λr � 1558.26 nm with different values. For P in � 1.5 mW,
Ptr � 0.6 mW, and T tr � 10 ns, the perturbation light is
strong enough to excite the microring neuron at δr � −10 pm,
δr � −20 pm, and δr � −30 pm simultaneously. As shown in
Fig. 4(a), the spikes of the microring neuron are almost the
same in terms of the shape and power, and this is further
verified by the experimental results. For Pin � 1 dBm

(a)

(b)

Fig. 2. (a) Measured real-time output waveform of self-pulsation for
different input powers. (b) Frequency of self-pulsation in relation to
pump power.

threshold region

(a)

(b)

Fig. 3. (a) Measured real-time output waveform of excitability in
response to perturbation pulses of increasing power. (b) Normalized
strength of the “negative” spike as a function of perturbation power.
The threshold area is indicated by the shaded region.
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and Ptr � 9.4 dBm, we measure the output spikes under
three different conditions (case 1: λpump � 1548.451 nm,
λtr � 1535.570 nm; case 2: λpump � 1548.461 nm, λtr �
1535.570 nm; case 3: λpump � 1548.451 nm, λtr �
1535.540 nm). As illustrated in Fig. 4(b), the power and shape
of the microring neuron spikes remain roughly the same with
slight variations.

C. Refractory Period
There are two types of refractory periods in excitable systems:
the absolute refractory period, during which excitations are
completely inhibited, and the relative refractive period, during
which subthreshold spikes can be excited. The refractory period
allows the spiking neuron to relax to its steady state, hence en-
abling repeatable spiking. However, its existence also sets the
maximum operation speed of spike processing. Although the
refractory period in a silicon microring has already been theo-
retically predicted [38] and experimentally demonstrated [39],
the power of the perturbation light is typically limited to be
lower than that of the pump light. In fact, the excitability
threshold distribution of the microring neuron can be divided
into three parts, as shown in Fig. 5(a). In region I, the micro-
ring neuron can be excited with perturbation power below the
pump power but above the threshold; in region II, the micro-
ring neuron can be excited only when the perturbation power is
much higher than the pump power. The microring neuron ex-
hibits self-pulsation in region III. Previous studies have mainly
focused on region I, where the operation speed of the microring
neuron is constrained by its refractory period. Here, we nu-
merically demonstrate that the refractory period can be sup-
pressed by increasing perturbation power. In the simulation,
two perturbation pulses with a time interval of 80 ns are used
to trigger the microring neuron. As shown in Fig. 5(b), for
P in � 1 mW and δr � −20 pm in region I, when perturbation
power is Ptr � 0.6 mW, the microring does not respond to the

second perturbation pulse, thus exhibiting a typical refractory
period. However, the microring can be excited again after the
first excitation when perturbation power is increased to be
higher than the pump power of Ptr � 2 mW. Configuring
the perturbation power above the pump power can significantly
relax the excitation requirements for the microring spiking neu-
ron. For P in � 0.5 mW and δr � −40 pm in region II, the
microring remains silent when perturbation power is the same
as the pump power of Ptr � 0.5 mW, but is successfully ex-
cited by the two perturbation pulses of Ptr � 3 mW, as illus-
trated in Fig. 5(c). We further experimentally validate this
feature by changing the time duration between two perturba-
tion pulses of Ptr � 8.5 dBm, each of which is strong enough
to trigger a complete excitation. In this case, the microring neu-
ron is working in region II, and the on-chip perturbation power
is estimated to be ∼6 dBm higher than the pump power. As
shown in Fig. 6, the second perturbation pulse can always ex-
cite a complete output spike with increasing time intervals of
20 ns, 50 ns, and 80 ns, which indicates the refractory period
has been successfully suppressed. It should be noted that the

(a)

(b)

Fig. 4. (a) Simulated and (b) measured microring neuron spikes for
different wavelength detuning values of the pump and perturbation
light.

(b)

(c)

(a)

1

2

3

Fig. 5. (a) Distribution of the excitability threshold for the micro-
ring neuron over different pump powers and wavelength detuning.
(b) For Pin � 1 mW and δr � −20 pm in region I, the microring
neuron exhibits a typical refractory period with Ptr � 0.6 mW, which
is successfully suppressed by increasing the perturbation power to
Ptr � 2 mW. (c) For Pin � 0.5 mW and δr � −40 pm in region
II, the microring neuron remains silent when the perturbation power
is the same as the pump power of Ptr � 0.5 mW, but is excited by two
perturbation pulses of Ptr � 3 mW with a time duration of 80 ns.
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absence of a typical refractory period allows the microring neu-
ron to operate with an infinite speed in theory, which is con-
strained to nearly sub-GHz by the excited pulse width in
practice.

D. Temporal Integration
Temporal integration of a spiking neuron refers to the ability to
integrate several closely spaced stimuli in time, and produce a
complete output spike once the accumulated potential exceeds
the excitability threshold. This property can be exploited to per-
form coincidence detection, which is the fundamental process
in various spatial–temporal recognition tasks. To investigate
this feature of the silicon microring neuron, we program a
perturbation pattern consisting of a single rectangular pulse fol-
lowed by two closely spaced pulses with varying time intervals.

Each individual perturbation pulse is below the excitation
threshold and yields only a subthreshold oscillation. As dem-
onstrated in Fig. 7, two pulses with a center-to-center time du-
ration of 18 ns can trigger a subthreshold spike with strength
similar to a single pulse. When the time interval between two
pulses shrinks to 10 ns, a deeper output spike can be excited
with improved strength compared to a single pulse. Leaky in-
tegration is indicated by the recovery process between two dips.
If the temporal separation further decreases to 5 ns, a single
complete output spike with significant strength enhancement
is produced on the arrival of two perturbation pulses.
Obviously, the microring spiking neuron is able to exhibit tem-
poral integration of multiple external stimuli.

E. Inhibitory Dynamics
Both excitatory and inhibitory dynamics play important roles
in spike-time-dependent plasticity (STDP) [43], which offers
an efficient learning mechanism for forming and modifying
neuromorphic computing systems. Previously, inhibition has
been experimentally demonstrated in VCSELs [25,29,31], a
quantum-dot mode-locked laser [21], and a microring modu-
lator neuron [35], but remains unexplored in the research field
of passive microresonators. The experimental results of control-
lable inhibitory dynamics in a microring are shown in Fig. 8.
We program the AWG to obtain a 15 ns excitatory pattern with
a high level of 2.2 and a 15 ns inhibitory pattern with a low
level of −2.2. The power level of perturbation light is 0.4 at the
steady state. It is clear that the excited output spikes are gradu-
ally suppressed to almost null as the inhibitory patterns move
toward excitatory patterns from 25 ns to 0 ns, while the output

Fig. 6. Measured real-time output waveform of refractory period
with varying time intervals between two perturbation pulses. Each
pulse is strong enough to excite the silicon microring neuron to emit
a complete spike.

Fig. 7. Measured real-time output waveform of temporal integra-
tion with varying time intervals between two perturbation pulses.
Only a subthreshold spike can be triggered by each single pulse.

Fig. 8. Measured real-time output waveform of inhibitory dynamics
with varying time intervals between the excitatory and inhibitory
pattens.
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spikes recover to their normal shapes immediately as the inhibi-
tory patterns move behind to excitatory patterns of 3 ns.
Notably, it is the first experimental observation of inhibition
in a passive microring.

4. CONCLUSION

In summary, we systematically investigate the fundamental
spiking regimes of an all-optical microring neuron with both
numerical and experimental results, i.e., self-pulsation, excita-
bility, refractory period, temporal integration, and inhibitory
dynamics. The fact that the passive microring behaves like a
class II resonate-and-fire neuron has been verified by the dis-
continuous frequency–power relation of self-pulsation, sub-
threshold oscillations, and a narrow excitation threshold
region. The refractory period of the microring neuron has been
successfully suppressed by engineering perturbation power
much higher than pump power, thus promising an operation
speed up to roughly sub-GHz. Furthermore, temporal integra-
tion and inhibitory dynamics are experimentally demonstrated
in a passive microresonator for the first time. Last but not least,
our silicon microring spiking neuron is fully compatible with
the standard CMOS process, thus paving the way for large-scale
integrated spiking neural networks.
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